Global Trends Today
  • News
  • Economy
  • Investing
  • Stock
  • Editor’s Pick
No Result
View All Result
  • News
  • Economy
  • Investing
  • Stock
  • Editor’s Pick
No Result
View All Result
Global Trends Today
No Result
View All Result
Home Investing

AI Uncovers Five Potential Lithium Alternatives for Next-generation Batteries

by
August 12, 2025
in Investing
0
AI Uncovers Five Potential Lithium Alternatives for Next-generation Batteries
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

Generative artificial intelligence (AI) has helped a group of scientists identify five new materials that could power the next wave of batteries without relying on lithium.

The study, published on June 26 in Cell Reports Physical Science, focuses on materials that could enable multivalent-ion batteries — a technology long touted for its potential, but hindered by practical challenges.

The lithium problem for batteries

Lithium dominates in batteries used in everything from smartphones to electric vehicles, but faces challenges — it is costly to extract, geographically concentrated and comes with environmental and geopolitical concerns.

As global demand for batteries surges, researchers are racing to find viable alternatives that are both abundant and efficient. Multivalent-ion batteries offer one potential path forward. Unlike lithium-ion batteries, which carry a single positive charge, multivalent-ion batteries using materials like magnesium or zinc carry two or three.

In theory, this means that they can pack more energy into the same space. However, their larger size and stronger charge make it difficult for them to move through standard battery materials.

“One of the biggest hurdles wasn’t a lack of promising battery chemistries — it was the sheer impossibility of testing millions of material combinations,” said lead author Dibakar Datta, a professor of mechanical and industrial engineering at the New Jersey Institute of Technology. “We turned to generative AI as a fast, systematic way to sift through that vast landscape and spot the few structures that could truly make multivalent batteries practical.”

To tackle the challenge, Datta’s team developed a “dual AI” system. The first part, a crystal diffusion variational autoencoder (CDVAE), was trained on vast datasets of known crystal structures. It could generate entirely new porous transition metal oxides, a class of material known for its structural flexibility and ionic conductivity.

The second part was a fine-tuned large language model (LLM) designed to narrow the list.

It focused on materials closest to thermodynamic stability, a critical factor in determining whether a compound can realistically be made and used in the real world.

The CDVAE cast a wide net, creating thousands of hypothetical structures with large, open channels. The LLM then acted as a filter, selecting only those most likely to hold up under actual manufacturing and operational conditions.

Five new battery candidates

“Our AI tools dramatically accelerated the discovery process, which uncovered five entirely new porous transition metal oxide structures that show remarkable promise,” Datta said.

These structures, the study suggests, offer unusually large pathways for ion movement, a crucial step toward making multivalent batteries that charge quickly and last for long periods of time. Quantum mechanical simulations and stability tests confirmed that the materials should be both synthetically feasible and structurally sound.

The five compounds now move to the next stage — experimental synthesis in collaboration with partner laboratories. If successful, they could be incorporated into prototype batteries and eventually scaled for commercial production.

Traditional materials research is often a painstaking, years-long process of hypothesis, synthesis and testing.

By contrast, AI can rapidly explore enormous “material spaces” that would be impossible for humans to search manually, flagging only the most promising candidates for further investigation.

What it means for the batteries of tomorrow

Multivalent-ion batteries have been studied for decades, yet few have reached commercial readiness because the necessary materials either didn’t conduct ions well enough or degraded too quickly.

By using AI to overcome that bottleneck, the research team hopes to accelerate not just battery chemistry, but also the infrastructure needed to support electrification on a global scale.

However, the five materials identified by Datta’s team aren’t ready to replace lithium tomorrow. They still need to be synthesized, tested in lab-scale batteries and proven to perform under real-world conditions.

Safety, scalability and cost effectiveness all remain open questions.

Still, the study’s authors argue that their AI framework has already proven its value by shrinking what could have been a decades-long search into a matter of months.

“This is more than just discovering new battery materials — it’s about establishing a rapid, scalable method to explore any advanced materials, from electronics to clean energy solutions, without extensive trial and error,” Datta added.

Securities Disclosure: I, Giann Liguid, hold no direct investment interest in any company mentioned in this article.

This post appeared first on investingnews.com
Previous Post

Alkane Completes Merger with Mandalay Resources, Begins Trading on TSX

Next Post

Acquisition of Silver Extraction Technology

Next Post
Acquisition of Silver Extraction Technology

Acquisition of Silver Extraction Technology

    Become a VIP member by signing up for our newsletter. Enjoy exclusive content, early access to sales, and special offers just for you! As a VIP, you'll receive personalized updates, loyalty rewards, and invitations to private events. Elevate your experience and join our exclusive community today!


    By opting in you agree to receive emails from us and our affiliates. Your information is secure and your privacy is protected.

    • Trending
    • Comments
    • Latest

    Hacker lexicon: What is a supply chain attack?

    June 11, 2021

    Losing Depop to US ownership makes the British tech sector look secondhand

    June 11, 2021

    Andrew Lloyd Webber to sue the Government if theatres are not fully reopened from June 21

    June 11, 2021

    Microsoft’s Kate Crawford: ‘AI is neither artificial nor intelligent’

    June 11, 2021
    New Harvard Study Links Lithium Deficiency to Alzheimer’s

    New Harvard Study Links Lithium Deficiency to Alzheimer’s

    0

    Reply to “Reply to Whitehead” by Desvousges, Mathews and Train: (4) My treatment of the weighted WTP is biased in favor of the DMT (2015) result/conclusion

    0

    The 40 Weirdest (And Best) Charts We Made In This Long, Strange Year

    0

    Will The Debate Over $2,000 Stimulus Checks Help Democrats In Georgia?

    0
    New Harvard Study Links Lithium Deficiency to Alzheimer’s

    New Harvard Study Links Lithium Deficiency to Alzheimer’s

    August 12, 2025
    Crypto Market Update: Bullish Targets Upsized US$4.82 Billion IPO Valuation

    Crypto Market Update: Bullish Targets Upsized US$4.82 Billion IPO Valuation

    August 12, 2025
    What Trump’s Nvidia and AMD China deal means for the world

    What Trump’s Nvidia and AMD China deal means for the world

    August 12, 2025
    Strong drilling targets identified next to high-grade gold-copper mine

    Strong drilling targets identified next to high-grade gold-copper mine

    August 12, 2025

    Recent News

    New Harvard Study Links Lithium Deficiency to Alzheimer’s

    New Harvard Study Links Lithium Deficiency to Alzheimer’s

    August 12, 2025
    Crypto Market Update: Bullish Targets Upsized US$4.82 Billion IPO Valuation

    Crypto Market Update: Bullish Targets Upsized US$4.82 Billion IPO Valuation

    August 12, 2025
    What Trump’s Nvidia and AMD China deal means for the world

    What Trump’s Nvidia and AMD China deal means for the world

    August 12, 2025
    Strong drilling targets identified next to high-grade gold-copper mine

    Strong drilling targets identified next to high-grade gold-copper mine

    August 12, 2025

    Disclaimer: GlobalTrendsToday.com, its managers, its employees, and assigns (collectively "The Company") do not make any guarantee or warranty about what is advertised above. Information provided by this website is for research purposes only and should not be considered as personalized financial advice. The Company is not affiliated with, nor does it receive compensation from, any specific security. The Company is not registered or licensed by any governing body in any jurisdiction to give investing advice or provide investment recommendation. Any investments recommended here should be taken into consideration only after consulting with your investment advisor and after reviewing the prospectus or financial statements of the company.

    • About us
    • Contacts
    • Privacy Policy
    • Terms & Conditions

    Copyright © 2025 globaltrendstoday.com | All Rights Reserved

    No Result
    View All Result
    • News
    • Economy
    • Investing
    • Stock
    • Editor’s Pick

    Copyright © 2025 globaltrendstoday.com | All Rights Reserved